
1 

Supporting Information. Kass, J.M., S.I. Meenan, N. Tinoco, S.F. Burneo, and R.P. 
Anderson. 2020. Improving area of occupancy estimates for parapatric species using 
distribution models and support vector machines. Ecological Applications. 
 
Appendix S2: Species distribution modeling details 
We chose a subset of the WorldClim 2.0 set of 19 bioclimatic variables for use as predictor 
variables in our SDMs: mean diurnal range (bio02), temperature seasonality (bio04), 
minimum temperature of coldest month (bio06), mean precipitation of wettest month 
(bio13), mean precipitation of driest month (bio14), precipitation seasonality (bio15), 
mean precipitation of warmest quarter (bio18), and mean precipitation of coldest quarter 
(bio19). To avoid collinearity in this subset of predictor variables and aid interpretability 
of the results, we removed those with a high variance inflation factor (VIF) in a step-wise 
fashion until none exceeded a VIF of 10, using the R package usdm (Naimi et al., 2014)). 
This process was done after masking all variable rasters by a shared extent, defined by a 
minimum convex polygon around the occurrence localities for both species, buffered by 
50 km. 

As both species’ occurrence data had (presumably artifactual) spatial clustering that 
could bias model results (Veloz, 2009), we thinned occurrence localities for each species 
separately by 5 km (to both minimize data loss and remove obvious clusters) using 
functionality from the R package spThin (Aiello-Lammens et al., 2015). We downloaded 
the bioclimatic variables we selected above at 30 arcsec resolution (1 km at the equator) 
in Wallace 1.0.6 (Kass et al., 2018). We delineated study extents for each species defined 
by a convex hull (i.e., minimum convex polygon) around the occurrence localities 
buffered by 50 km, a distance that captures as much of the area likely available to each 
species without including regions east of the crest of the Andes, where neither species has 
been found (and to which presumably neither were historically able to disperse). We 
created these study extent polygons in R because Wallace cannot currently buffer extents 
in meters, and input these shapefiles as a user-specified study extent to mask the 
bioclimatic rasters. We extracted background values for every cell with climatic data from 
each species’ respective study extent in order to get a comprehensive background sample 
to avoid artifactually truncating the model response (Guevara et al., 2018). 

We built SDMs within Wallace using Maxent 3.4.1, a presence/background, machine 
learning modeling method that estimates a species’ response to environmental predictor 
variables subject to constraints derived from these variables (Phillips et al., 2017). Maxent 
models can potentially fit very complex responses, but complexity can be increasingly 
penalized to result in simpler responses—these settings can be tuned to allow for the 
selection of models with high performance and low overfitting (Merow et al., 2013; 
Radosavljevic & Anderson, 2014). In Maxent, feature classes control the various shapes 
of the modeled response and determine how complex it can be, and higher values of the 
regularization multiplier enforce simpler models with fewer resulting non-zero 
coefficients (Phillips & Dudík, 2008; Merow et al., 2013). For each species, we built 
suites of models with varying levels of complexity based on functionality provided from 
the R package ENMeval 0.3.0 (Muscarella et al., 2014), considering combinations of 
linear (L), quadratic (Q), and hinge (H; similar to splines) feature classes (L, LQ, H, and 
LQH) with a range of regularization multipliers (0.5 to 5 by increments of 0.5). This 
resulted in 40 candidate models per species. For evaluation, we implemented the n−1 
“jackknife” method (or "leave-one-out"), which is recommended for maximizing the 
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information available for model training when the sample size is small (Pearson et al., 
2007; Shcheglovitova & Anderson, 2013). 

We selected optimal models sequentially by choosing those that accurately predicted 
the most withheld occurrence localities (i.e., lowest average omission rate), and then to 
break any ties, those with the best discriminatory ability on the withheld occurrences 
(highest average test AUC). We first removed from consideration all models with fewer 
than two parameters (non-zero coefficients), as these had extremely unrealistic 
predictions and responses, and those with average AUCtest below 0.5, which indicates poor 
discriminatory ability (see description below). We then selected models with the lowest 
average omission rate on withheld data. As the occurrence data for both species was 
derived from taxonomic identifications made by specialists and nearly all had relatively 
low estimated spatial error (<5 km), we chose the minimum training presence (MTP) 
threshold, which is based on the minimum suitability value of the training data. When 
multiple candidate models were tied for lowest omission rate, we selected the one with 
the highest average AUCtest. The area under the curve (AUC) of the receiver operating 
characteristic is a standard measure of discriminatory ability for SDMs (Fielding & Bell, 
1997), providing a threshold-independent evaluation of the model’s ability to differentiate 
presences from absences (or in this case, background; Peterson et al., 2011), and AUCtest 

is the AUC calculated on withheld test data. Although there are problems with interpreting 
AUC in absolute terms as a measure of accuracy for presence/background models (Lobo 
et al., 2008), it is a valid metric to compare among models for a single species across the 
same study extent (Peterson et al., 2011). We calculated both omission rate and AUCtest 

on each withheld record in turn, and took the average across all iterations (Shcheglovitova 
& Anderson, 2013). 
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